
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

答案 C C B A B B C A B B A C B B B

Python　六级

2025 年 12 月

1 单选题（每题 2 分，共 30 分）

第 1 题 在Python的面向对象编程中，下列关于“动态绑定（等效于虚函数）”的描述中，错误的是（ ）。

A. 动态绑定用于支持运行时多态。

B. 通过基类变量调用方法时，会根据对象实际类型决定调用版本。

C. 构造函数（ __init__ ）可以通过动态绑定实现多态以支持灵活初始化。

D. 基类析构函数（ __del__ ）常保证子类调用其实现，以避免资源泄漏析构函数常声明为虚函数以避免资源泄
漏。

第 2 题 执行如下代码，将输出 钢琴：叮咚叮咚 和 吉他：咚咚当当 而不是两行 乐器在演奏声音 ，这体现了面向对象
编程的（ ）特性。

A. 继承

B. 封装

C. 多态

D. 链接

class Instrument:
 """基类：乐器"""
 def play(self):
 print("乐器在演奏声音")

 def __del__(self):
 pass

class Piano(Instrument):
 """子类：钢琴"""
 def play(self):
 print("钢琴：叮咚叮咚")

class Guitar(Instrument):
 def play(self):
 print("吉他：咚咚当当")

if __name__ == "__main__":
 instruments = [Piano(), Guitar()]

 for inst in instruments:
 inst.play()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

第 1 页 / 共 14 页

af://n2
af://n4

第 3 题 执行下面代码，将输出（ ）。

A.

B.

C. 编译错误

D. 运行错误

第 4 题 某文本编辑器把用户输入的字符依次压入栈 S。用户依次输入 A , B , C , D 后，用户按了两次撤销（每次
撤销，弹出栈顶一个字符）。此时栈从栈底到栈顶的内容是：（ ）。

A. A B

B. A B C

C. A B D

D. B C

第 5 题 假设循环队列数组长度为 N ，其中队空判断条件为： front == rear ，队满判断条件为： (rear + 1) %
N == front ，出队对应的操作为： front = (front + 1) % N ，入队对于的操作为： rear = (rear + 1) %

N 。循环队列长度 N = 6 ，初始 front = 1 , rear = 1 ，执行操作序列为：入队, 入队, 入队, 出队, 入队, 入队，
则最终 (front, rear) 的值是（ ）。

A. (2, 5)

B. (2, 0)

C. (3, 5)

D. (3, 0)

第 6 题 以下函数 check() 用于判断一棵二叉树是否为（ ）。

class Instrument:
 def play(self):
 print("乐器在演奏声音")

 def __del__(self):
 pass

class Piano(Instrument):
 def play(self):
 print("钢琴：叮咚叮咚")

class Guitar(Instrument):
 def play(self):
 print("吉他：咚咚当当")

if __name__ == "__main__":
 instruments = [Piano(), Guitar()]
 for inst in instruments:
 Instrument.play(inst)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

钢琴：叮咚叮咚
吉他：咚咚当当

1

2

乐器在演奏声音
乐器在演奏声音

1

2

第 2 页 / 共 14 页

A. 满二叉树

B. 完全二叉树

C. 二叉搜索树

D. 平衡二叉树

第 7 题 以下代码实现了二叉树的（ ）。

A. 前序遍历

B. 中序遍历

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

from collections import deque

def check(root):
 if not root:
 return True

 q = deque()
 q.append(root)
 has_null = False

 while q:
 cur = q.popleft()

 if not cur:
 has_null = True
 else:
 if has_null:
 return False
 q.append(cur.left)
 q.append(cur.right)

 return True

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

def traverse(root):
 if not root:
 return
 traverse(root.left)
 traverse(root.right)
 print(root.val, end=" ")

if __name__ == "__main__":
 root = TreeNode(1)
 root.right = TreeNode(2)
 root.right.left = TreeNode(3)

 print("后序遍历结果：", end="")
 traverse(root)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

第 3 页 / 共 14 页

C. 后序遍历

D. 层序遍历

第 8 题 下面代码实现了哈夫曼编码，则横线处应填写的代码是（ ）。

第 4 页 / 共 14 页

class Symbol:
 def __init__(self, ch='', freq=0, code=''):
 self.ch = ch
 self.freq = freq
 self.code = code

class Node:
 def __init__(self, w=0, l=-1, r=-1, sym=-1):
 self.w = w
 self.l = l
 self.r = r
 self.sym = sym

def pop_min_node(nodes, leaf_idx, n, pA, internal_idx, pB):

 if pA[0] < n and (pB[0] >= len(internal_idx) or nodes[leaf_idx[pA[0]]].w <=
nodes[internal_idx[pB[0]]].w):
 res = leaf_idx[pA[0]]
 pA[0] += 1
 return res
 else:
 res = internal_idx[pB[0]]
 pB[0] += 1
 return res

def dfs_build_codes(u, nodes, sym_list, path):
 if u == -1:
 return
 if nodes[u].sym != -1:
 sym_list[nodes[u].sym].code = ''.join(path)
 return
 path.append('0')
 dfs_build_codes(nodes[u].l, nodes, sym_list, path)
 path.pop()
 path.append('1')
 dfs_build_codes(nodes[u].r, nodes, sym_list, path)
 path.pop()

def build_huffman_codes(sym_list):
 n = len(sym_list)
 for sym in sym_list:
 sym.code = ''
 if n <= 0:
 return -1
 if n == 1:
 sym_list[0].code = '0'
 return 0
 nodes = []
 leaf_idx = []
 for i in range(n):
 leaf_idx.append(len(nodes))
 nodes.append(Node(sym_list[i].freq, -1, -1, i))
 leaf_idx.sort(key=lambda x: (nodes[x].w, nodes[x].sym))
 internal_idx = []
 pA = [0]
 pB = [0]
 for k in range(1, n):
 x = pop_min_node(nodes, leaf_idx, n, pA, internal_idx, pB)
 y = pop_min_node(nodes, leaf_idx, n, pA, internal_idx, pB)
 z = len(nodes)

 root = internal_idx[-1] if internal_idx else -1
 path = []
 dfs_build_codes(root, nodes, sym_list, path)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

第 5 页 / 共 14 页

A.

B.

C.

D.

第 9 题 以下关于哈夫曼编码的说法，正确的是（ ）。

A. 哈夫曼编码是定长编码

B. 哈夫曼编码中，没有任何一个字符的编码是另一个字符编码的前缀

C. 哈夫曼编码一定唯一

D. 哈夫曼编码不能用于数据压缩

第 10 题 以下函数实现了二叉排序树（BST）的（ ）操作。

 return root

if __name__ == "__main__":
 syms = [
 Symbol('A', 5),
 Symbol('B', 9),
 Symbol('C', 12),
 Symbol('D', 13),
 Symbol('E', 16),
 Symbol('F', 45)
]
 root = build_huffman_codes(syms)
 print(f"哈夫曼树根节点下标：{root}")
 for sym in syms:
 print(f"字符 '{sym.ch}' (频率 {sym.freq})：编码 {sym.code}")

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

nodes.append(Node(nodes[x].w + nodes[y].w, x, y, -1))
internal_idx.append(z)

1

2

nodes.append(Node(nodes[x].w + nodes[y].w, x, y, 1))
internal_idx.append(z)

1

2

nodes.append(Node(nodes[x-1].w + nodes[y].w, x, y, 1))
internal_idx.append(z)

1

2

nodes.append(Node(nodes[x+1].w + nodes[y].w, x, y, 1))
internal_idx.append(z)

1

2

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

def op(root, x):
 if not root:
 return TreeNode(x)

 if x < root.val:
 root.left = op(root.left, x)
 else:
 root.right = op(root.right, x)
 return root

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

第 6 页 / 共 14 页

A. 查找

B. 插入

C. 删除

D. 遍历

第 11 题 下列代码实现了树的深度优先遍历，则横线处应填入（ ）。

A.

B.

C.

class TreeNode:
 def __init__(self, x):
 self.val = x
 self.left = None
 self.right = None

def dfs1(root):
 if not root:
 return
 temp = []
 temp.append(root)
 while temp:
 node = temp[-1]
 temp.pop()
 print(node.val, end=" ")
 if node.right:
 temp.append(node.right)
 if node.left:
 temp.append(node.left)

def dfs2(root):
 if not root:
 return
 st = []
 st.append(root)
 while st:
 node = st[-1]
 st.pop()
 print(node.val, end=" ")
 if node.right:
 st.append(node.right)
 ——————————————————

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 if node.left:
 st.append(node.left)

1

2

3

 if node.right:
 st.append(node.left)

1

2

3

 if node.left:
 st.append(node.right)

1

2

3

第 7 页 / 共 14 页

D.

第 12 题 给定一棵普通二叉树（节点值没有大小规律），下面代码判断是否存在值为 x 的结点，则横线处应填入（

）。

A.

B.

C.

D.

第 13 题 在二叉排序树（Binary Search Tree, BST）中，假设节点值互不相同。给定如下搜索函数，以下说法 一定正
确的是（ ）。

 if node.right:
 st.append(node.right)

1

2

3

class TreeNode:
 def __init__(self, x):
 self.val = x
 self.left = None
 self.right = None

from collections import deque

def bfs_find(root, x):
 if not root:
 return None

 q = deque()
 q.append(root)

 while q:
 cur = q.popleft()
 if cur.val == x:
 return cur

 return None

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 q.append(cur.left)
1

2

3

 q.append(cur.right)1

 if cur.left:
 q.append(cur.left)
 if cur.right:
 q.append(cur.right)

1

2

3

4

 if cur.right:
 q.append(cur.left)
 if cur.left:
 q.append(cur.right)

1

2

3

4

第 8 页 / 共 14 页

题号 1 2 3 4 5 6 7 8 9 10

答案

A. 最坏情况下，访问结点数是

B. 最坏情况下，访问结点数是

C. 无论如何，访问结点数都不超过树高的一半

D. 一定比在普通二叉树中搜索快

第 14 题 0/1 背包（每件物品最多选一次）问题通常可用一维动态规划求解，核心代码如下。遍历的方向无所谓，则
下面说法正确的是（ ）。

A. 内层 j 必须从小到大，否则会漏解

B. 内层 j 必须从大到小，否则同一件物品会被用多次

C. j 从大到小或从小到大都一样

D. 只要 dp 初始为 0 ，方向无所谓

第 15 题 以下关于动态规划的说法中，错误的是（ ）。

A. 动态规划方法通常能够列出递推公式。

B. 动态规划方法的时间复杂度通常为状态的个数。

C. 动态规划方法有递推和递归两种实现形式。

D. 在使用动态规划思想（即避免重复子问题）的前提下，递推实现与递归实现（记忆化搜索）的时间复杂度通
常是相当的。

2 判断题（每题 2 分，共 20 分）

第 1 题 以下代码中，构造函数被调用的次数是1次。

class Node:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

def find(root, x):
 while root:
 if root.val == x:
 return True
 if x < root.val:
 root = root.left
 else:
 root = root.right
 return False

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

def zero_one_knapsack(items, W):
 dp = [0] * (W + 1)
 for w, v in items:
 for j in range(W, w - 1, -1):
 dp[j] = max(dp[j], dp[j - w] + v)

 return dp[W]

1

2

3

4

5

6

7

第 9 页 / 共 14 页

af://n214

第 2 题 面向对象编程中，封装是指将数据和操作数据的方法绑定在一起，并对外隐藏实现细节。

第 3 题 以下代码能够正确统计二叉树中叶子结点的数量。

第 4 题 广度优先遍历二叉树可用栈来实现。

第 5 题 函数调用管理可用栈来管理。

第 6 题 在二叉排序树（BST）中，若某结点的左子树为空，则该结点一定是整棵树中的最小值结点。

第 7 题 下面的函数能正确判断一棵树是不是二叉排序树（左边的数字要比当前数字小，右边的数字要比当前数字
大）。

class Test:
 init_count = 0

 def __init__(self):
 Test.init_count += 1
 print("T ", end="")

 def __copy__(self):
 print("（拷贝构造，不触发__init__）", end="")
 new_obj = Test.__new__(Test)
 return new_obj

if __name__ == "__main__":
 a = Test()
 import copy
 b = copy.copy(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

def count_leaf(root):
 if not root:
 return 0
 if not root.left and not root.right:
 return 1
 return count_leaf(root.left) + count_leaf(root.right)

if __name__ == "__main__":
 root1 = TreeNode(1)
 root1.left = TreeNode(2)
 root1.right = TreeNode(3)
 root1.left.left = TreeNode(4)
 root1.left.right = TreeNode(5)
 root1.right.right = TreeNode(6)
 print(f"二叉树1的叶子节点数：{count_leaf(root1)}")
 root2 = TreeNode(1)
 print(f"二叉树2的叶子节点数：{count_leaf(root2)}") 1

 root3 = None
 print(f"空树的叶子节点数：{count_leaf(root3)}")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

第 10 页 / 共 14 页

第 8 题 格雷编码相邻两个编码之间必须有多位不同，以避免数据传输错误。

第 9 题 小杨在玩一个闯关游戏，从第 1 关走到第 4 关。每一关的体力消耗如下（下标表示关卡编号）： cost = [
0, 3, 5, 2, 4] ，其中 cost[i] 表示到达第 i 关需要消耗的体力， cost[0]=0 表示在开始状态，体力消耗为
0。小杨每次可以从当前关卡 前进 1 步或 2 步。按照上述规则，从第 1 关到第 4 关所需消耗的最小体力为 7。

第 10 题 假定只有一个根节点的树的深度为1，则一棵有 个节点的完全二叉树，则树的深度为 。

3 编程题（每题 25 分，共 50 分）

3.1 编程题 1

试题名称：路径覆盖

时间限制：3.0 s

内存限制：512.0 MB

3.1.1 题目描述

给定一棵有 个结点的有根树 ，结点依次以 编号，根结点编号为 。方便起见，编号为 的结点称为结
点 。

初始时 中的结点均为白色。你需要将 中的若干个结点染为黑色，使得所有叶子到根的路径上至少有一个黑色结
点。将结点 染为黑色需要代价 ，你需要在满足以上条件的情况下，最小化染色代价之和。

叶子是指 中没有子结点的结点。

3.1.2 输入格式

第一行，一个正整数 ，表示结点数量。

第二行， 个正整数 ，其中 表示结点 的父结点的编号，保证 。

第三行， 个正整数 ，其中 表示将结点 染为黑色所需的代价。

3.1.3 输出格式

一行，一个整数，表示在满足所有叶子到根的路径上至少有一个黑色结点的前提下，染色代价之和的最小值。

class TreeNode:
 def __init__(self, val=0, left=None, right=None):
 self.val = val
 self.left = left
 self.right = right

def is_bst(root, min_val=float('-inf'), max_val=float('inf')):
 if not root:
 return True
 if root.val <= min_val or root.val >= max_val:
 return False
 return is_bst(root.left, min_val, root.val) and is_bst(root.right, root.val, max_val)

1

2

3

4

5

6

7

8

9

10

11

12

13

第 11 页 / 共 14 页

af://n253
af://n254
af://n263
af://n267
af://n271

3.1.4 样例

3.1.4.1 输入样例 1

3.1.4.2 输出样例 1

3.1.4.3 输入样例 2

3.1.4.4 输出样例 2

3.1.5 数据范围

对于 的测试点，保证 。

对于另外 的测试点，保证 。

对于所有测试点，保证 ， 。

3.1.6 参考程序

4
1 2 3
5 6 2 3

1

2

3

21

7
1 1 2 2 3 3
64 16 15 4 3 2 1

1

2

3

101

getint = lambda: map(int, input().split())
getints = lambda: list(getint())
获取节点数
n = int(input())
各个节点的根节点
f = [0, 0] + getints()
各个节点涂黑的成本
c = [0] + getints()
cnt[i]表示节点i有多少子节点
cnt = [0] * (n + 1)
ans[i]表示以节点i为根节点的子树，需要多少成本才能让所有叶子结点到根节点都有涂黑的节点
ans = [0] * (n + 1)

统计一个节点有多少子节点
for i in range(2, n + 1):
 cnt[f[i]] += 1
遍历每一个节点，因为一个节点的父节点编号肯定这个节点，所以大编号的一定更深
for i in range(n, 0, -1):
 # 如果一个节点没有子节点，那么显然ans[i]=c[i]就是把自己涂黑
 if cnt[i] == 0:
 ans[i] = c[i]
 # 一个节点当前已经找到的答案等于
 ans[i] = min(ans[i], c[i])
 ans[f[i]] += ans[i]
print(ans[1])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

第 12 页 / 共 14 页

af://n273
af://n274
af://n276
af://n278
af://n280
af://n282
af://n286

3.2 编程题 2

试题名称：道具商店

时间限制：30.0 s

内存限制：512.0 MB

3.2.1 题目描述

道具商店里有 件道具可供挑选。第 件道具可为玩家提升 点攻击力，需要 枚金币才能购买，每件道具只能购
买一次。现在你有 枚金币，请问你最多可以提升多少点攻击力？

3.2.2 输入格式

第一行，两个正整数 ，表示道具数量以及你所拥有的金币数量。

接下来 行，每行两个正整数 ，表示道具所提升的攻击力点数，以及购买所需的金币数量。

3.2.3 输出格式

输出一行，一个整数，表示最多可以提升的攻击力点数。

3.2.4 样例

3.2.4.1 输入样例 1

3.2.4.2 输出样例 1

3.2.4.3 输入样例 2

3.2.4.4 输出样例 2

3.2.5 数据范围

对于 的测试点，保证 ， 。

对于所有测试点，保证 ， ， ， 。

3 5
99 1
33 2
11 3

1

2

3

4

1321

4 100
10 1
20 11
40 33
100 99

1

2

3

4

5

1101

第 13 页 / 共 14 页

af://n288
af://n297
af://n299
af://n302
af://n304
af://n305
af://n307
af://n309
af://n311
af://n313

3.2.6 参考程序

getint = lambda: map(int, input().split())
getints = lambda: list(getint())
得到物品数量和预算
n, k = getint()
这里进行了滚动优化，dp[j]表示攻击力为j的情况下的最小预算
最大攻击力为500*500，所以初始化这么大的数组，并且所有值都是1e10表示无穷大预算
f = [0] + [int(1e10)] * 500 * 500
能够达到的最大攻击力，用来缩小遍历的范围
s = 0
for i in range(n):
 # 输入当前物品的攻击力和价格
 a, c = getint()
 s += a
 # 计算题解中的转移公式，因为j是从高到低遍历的，f[j-a]和f[j]此时尚未被更新，相当于是f[i-1][j-a]与
f[i-1][j]
 for j in range(s, a - 1, -1):
 f[j] = min(f[j], f[j - a] + c)

遍历f[i]得到符合预算条件的最高攻击力
ans = 0
for i in range(s + 1):
 if f[i] <= k:
 ans = i
print(ans)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

第 14 页 / 共 14 页

af://n316

	Python　六级
	单选题（每题 2 分，共 30 分）
	判断题（每题 2 分，共 20 分）
	编程题（每题 25 分，共 50 分）
	编程题 1
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

	编程题 2
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

