
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

答案 C C C A B B C A B B A C B B B

C++　六级

2025 年 12 月

1 单选题（每题 2 分，共 30 分）

第 1 题 在面向对象编程中，下列关于 虚函数 的描述中，错误的是（ ）。

A. 虚函数用于支持运行时多态

B. 通过基类指针调用虚函数时，会根据对象实际类型决定调用版本

C. 构造函数可以声明为虚函数以支持多态

D. 基类析构函数常声明为虚函数以避免资源泄漏

第 2 题 执行如下代码，会输出 钢琴：叮咚叮咚 和 吉他：咚咚当当 。这体现了面向对象编程的（ ）特性。

第 1 页 / 共 13 页

af://n2
af://n4

A. 继承

B. 封装

C. 多态

D. 链接

第 3 题 关于以下代码，说法正确的是（ ）。

class Instrument {
public:
 virtual void play() {
 cout << "乐器在演奏声音" << endl;
 }

 virtual ~Instrument() {}
};

class Piano : public Instrument {
public:
 void play() override {
 cout << "钢琴：叮咚叮咚" << endl;
 }
};

class Guitar : public Instrument {
public:
 void play() override {
 cout << "吉他：咚咚当当" << endl;
 }
};

int main() {
 Instrument* instruments[2];
 instruments[0] = new Piano();
 instruments[1] = new Guitar();

 for (int i = 0; i < 2; ++i) {
 instruments[i]->play();
 }

 for (int i = 0; i < 3; ++i) {
 delete instruments[i];
 }
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

第 2 页 / 共 13 页

A. 执行代码会输出两行，内容分别为： 钢琴：叮咚叮咚 和 吉他：咚咚当当

B. 执行代码会输出两行，内容分别为： 乐器在演奏声音 和 乐器在演奏声音

C. 代码编译出现错误

D. 代码运行出现错误

第 4 题 某文本编辑器把用户输入的字符依次压入栈 S。用户依次输入 A , B , C , D 后，用户按了两次撤销（每次
撤销，弹出栈顶一个字符）。此时栈从栈底到栈顶的内容是：（ ）。

A. A B

B. A B C

C. A B D

D. B C

第 5 题 假设循环队列数组长度为 N ，其中队空判断条件为： front == rear ，队满判断条件为： (rear + 1) %
N == front ，出队对应的操作为： front = (front + 1) % N ，入队对于的操作为： rear = (rear + 1) %

N 。循环队列长度 N = 6 ，初始 front = 1 , rear = 1 ，执行操作序列为：入队, 入队, 入队, 出队, 入队, 入队，
则最终 (front, rear) 的值是（ ）。

A. (2, 5)

class Instrument {
public:
 void play() {
 cout << "乐器在演奏声音" << endl;
 }

 virtual ~Instrument() {}
};

class Piano : public Instrument {
public:
 void play() override {
 cout << "钢琴：叮咚叮咚" << endl;
 }
};

class Guitar : public Instrument {
public:
 void play() override {
 cout << "吉他：咚咚当当" << endl;
 }
};

int main() {
 Instrument* instruments[2];
 instruments[0] = new Piano();
 instruments[1] = new Guitar();

 for (int i = 0; i < 2; ++i) {
 instruments[i]->play();
 }

 for (int i = 0; i < 3; ++i) {
 delete instruments[i];
 }
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

第 3 页 / 共 13 页

B. (2, 0)

C. (3, 5)

D. (3, 0)

第 6 题 以下函数 check() 用于判断一棵二叉树是否为（ ）。

A. 满二叉树

B. 完全二叉树

C. 二叉搜索树

D. 平衡二叉树

第 7 题 以下代码实现了二叉树的（ ）。

A. 前序遍历

B. 中序遍历

C. 后序遍历

D. 层序遍历

第 8 题 下面代码实现了哈夫曼编码，则横线处应填写的代码是（ ）。

bool check(TreeNode* root) {
 if (!root) return true;

 queue<TreeNode*> q;
 q.push(root);
 bool hasNull = false;
 while (!q.empty()) {
 TreeNode* cur = q.front(); q.pop();
 if (!cur) {
 hasNull = true;
 } else {
 if (hasNull) return false;
 q.push(cur->left);
 q.push(cur->right);
 }
 }
 return true;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

void traverse(TreeNode* root) {
 if (!root) return;
 traverse(root->left);
 traverse(root->right);
 cout << root->val << " ";
}

1

2

3

4

5

6

第 4 页 / 共 13 页

struct Symbol {
 char ch; //字符
 long long freq; //频率
 string code; //哈夫曼编码
};

struct Node {
 long long w; //权值
 int l, r; //左右孩子（节点下标），-1 表示空
 int sym; // 叶子对应符号下标；内部节点为 -1
 Node(long long _w=0, int _l=-1, int _r=-1, int _sym=-1)
 : w(_w), l(_l), r(_r), sym(_sym) {}
};

// 从 A(leafIdx) 和 B(internalIdx) 的队首取最小的一个节点下标
static int PopMinNode(const vector<Node>& nodes,
 const vector<int>& leafIdx, int n, int& pA,
 const vector<int>& internalIdx, int& pB) {
 if (pA < n && (pB >= (int)internalIdx.size() ||
 nodes[leafIdx[pA]].w <= nodes[internalIdx[pB]].w)) {
 return leafIdx[pA++];
 }
 else {
 return internalIdx[pB++];
 }
}

// DFS 生成编码（左 0，右 1）
static void DFSBuildCodes(int u, const vector<Node>& nodes, Symbol sym[], string& path) {
 if (u == -1) return;

 if (nodes[u].sym != -1) { // 叶子
 sym[nodes[u].sym].code = path;
 return;
 }

 path.push_back('0');
 DFSBuildCodes(nodes[u].l, nodes, sym, path);
 path.pop_back();

 path.push_back('1');
 DFSBuildCodes(nodes[u].r, nodes, sym, path);
 path.pop_back();
}

int BuildHuffmanCodes(Symbol sym[], int n) {
 for (int i = 0; i < n; i++) sym[i].code.clear();
 if (n <= 0) return -1;

 // 只有一个字符：约定编码为 "0"
 if (n == 1) {
 sym[0].code = "0";
 return 0;
 }

 vector<Node> nodes;
 nodes.reserve(2 * n);

 // 1) 建立叶子节点
 vector<int> leafIdx(n);
 for (int i = 0; i < n; i++) {
 leafIdx[i] = (int)nodes.size();
 nodes.push_back(Node(sym[i].freq, -1, -1, i));
 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

第 5 页 / 共 13 页

A.

B.

C.

D.

第 9 题 以下关于哈夫曼编码的说法，正确的是（ ）。

A. 哈夫曼编码是定长编码

B. 哈夫曼编码中，没有任何一个字符的编码是另一个字符编码的前缀

C. 哈夫曼编码一定唯一

D. 哈夫曼编码不能用于数据压缩

第 10 题 以下函数实现了二叉排序树（BST）的（ ）操作。

 // 2) 叶子按权值排序（A 队列）
 sort(leafIdx.begin(), leafIdx.end(),
 [&](int a, int b) {
 if (nodes[a].w != nodes[b].w) return nodes[a].w < nodes[b].w;
 return nodes[a].sym < nodes[b].sym; // 稳定一下
 });

 // B 队列（内部节点下标队列）
 vector<int> internalIdx;
 internalIdx.reserve(n);

 int pA = 0, pB = 0;

 // 3) 合并 n-1 次
 for (int k = 1; k < n; k++) {
 int x = PopMinNode(nodes, leafIdx, n, pA, internalIdx, pB);
 int y = PopMinNode(nodes, leafIdx, n, pA, internalIdx, pB);

 int z = (int)nodes.size();
 ________________________ // 在此处填写代码
 }

 int root = internalIdx.back();

 // 4) DFS 生成编码
 string path;
 DFSBuildCodes(root, nodes, sym, path);
 return root;
}

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

nodes.push_back(Node(nodes[x].w + nodes[y].w, x, y, -1));
internalIdx.push_back(z);

1

2

nodes.push_back(Node(nodes[x].w + nodes[y].w, x, y, -1));
leafIdx.push_back(z);

1

2

internalIdx.push_back(z);
nodes.push_back(Node(nodes[x].w + nodes[y].w, x, y, x+y));

1

2

nodes.push_back(Node(nodes[x].w + nodes[y].w, x, y, x+y));
leafIdx.push_back(z);

1

2

第 6 页 / 共 13 页

A. 查找

B. 插入

C. 删除

D. 遍历

第 11 题 下列代码实现了树的深度优先遍历，则横线处应填入（ ）。

A. if (node->left) st.push(node->left);

B. if (node->left) st.pop(node->left);

C. if (node->left) st.front(node->left);

D. if (node->left) st.push(node->right);

第 12 题 给定一棵普通二叉树（节点值没有大小规律），下面代码判断是否存在值为 x 的结点，则横线处应填入（
）。

TreeNode* op(TreeNode* root, int x) {
 if (!root) return new TreeNode(x);
 if (x < root->val)
 root->left = op(root->left, x);
 else
 root->right = op(root->right, x);
 return root;
}

1

2

3

4

5

6

7

8

struct TreeNode {
 int val;
 TreeNode* left;
 TreeNode* right;
 TreeNode(int x): val(x), left(nullptr), right(nullptr) {}
};

void dfs(TreeNode* root) {
 if (!root) return;
 stack<TreeNode*> st;
 st.push(root);
 while (!st.empty()) {
 TreeNode* node = st.top(); st.pop();
 cout << node->val << " ";
 if (node->right) st.push(node->right);

 }
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

第 7 页 / 共 13 页

A. q.push(cur);

B. if (cur->right) q.push(cur->right);

C.

D.

第 13 题 在二叉排序树（Binary Search Tree, BST）中，假设节点值互不相同。给定如下搜索函数，以下说法一定正
确的是（ ）。

A. 最坏情况下，访问结点数是

B. 最坏情况下，访问结点数是

C. 无论如何，访问结点数都不超过树高的一半

D. 一定比在普通二叉树中搜索快

第 14 题 0/1 背包（每件物品最多选一次）问题通常可用一维动态规划求解，核心代码如下。则下面说法正确的是（

）。

struct TreeNode {
 int val;
 TreeNode* left;
 TreeNode* right;
 TreeNode(int x): val(x), left(nullptr), right(nullptr) {}
};

TreeNode* bfsFind(TreeNode* root, int x) {
 if (!root) return nullptr;

 queue<TreeNode*> q;
 q.push(root);

 while (!q.empty()) {
 TreeNode* cur = q.front(); q.pop();
 if (cur->val == x) return cur;

 }
 return nullptr;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

if (cur->left)
 q.push(cur->left);
if (cur->right)
 q.push(cur->right);

1

2

3

4

q.push(cur->left);
q.push(cur->right);

1

2

bool find(Node* root, int x) {
 while (root) {
 if (root->val == x) return true;
 root = (x < root->val) ? root->left : root->right;
 }
 return false;
}

1

2

3

4

5

6

7

for each item (w, v):
 for (int j = W; j >= w; --j)
 dp[j] = max(dp[j], dp[j-w] + v);

1

2

3

第 8 页 / 共 13 页

题号 1 2 3 4 5 6 7 8 9 10

答案

A. 内层 j 必须从小到大，否则会漏解

B. 内层 j 必须从大到小，否则同一件物品会被用多次

C. j 从大到小或从小到大都一样

D. 只要 dp 初始为 0 ，方向无所谓

第 15 题 以下关于动态规划的说法中，错误的是（ ）。

A. 动态规划方法通常能够列出递推公式。

B. 动态规划方法的时间复杂度通常为状态的个数。

C. 动态规划方法有递推和递归两种实现形式。

D. 对很多问题，递推实现和递归实现动态规划方法的时间复杂度相当。

2 判断题（每题 2 分，共 20 分）

第 1 题 以下代码中，构造函数被调用的次数是1次。

第 2 题 面向对象编程中，封装是指将数据和操作数据的方法绑定在一起，并对外隐藏实现细节。

第 3 题 以下代码能够正确统计二叉树中叶子结点的数量。

第 4 题 广度优先遍历二叉树可用栈来实现。

第 5 题 函数调用管理可用栈来管理。

第 6 题 在二叉排序树（BST）中，若某结点的左子树为空，则该结点一定是整棵树中的最小值结点。

第 7 题 下面的函数能正确判断一棵树是不是二叉排序树（左边的数字要比当前数字小，右边的数字要比当前数字
大）。

class Test {
public:
 Test() { cout << "T "; }
};

int main() {
 Test a;
 Test b = a;
}

1

2

3

4

5

6

7

8

9

int countLeaf(TreeNode* root) {
 if (!root) return 0;
 if (!root->left && !root->right) return 1;
 return countLeaf(root->left) + countLeaf(root->right);
}

1

2

3

4

5

bool isBST(TreeNode* root, int minVal, int maxVal) {
 if (!root) return true;
 if (root->val <= minVal || root->val >= maxVal)
 return false;
 return isBST(root->left, minVal, root->val) &&
 isBST(root->right, root->val, maxVal);
}

1

2

3

4

5

6

7

第 9 页 / 共 13 页

af://n206

第 8 题 格雷编码相邻两个编码之间必须有多位不同，以避免数据传输错误。

第 9 题 小杨在玩一个闯关游戏，从第 1 关走到第 4 关。每一关的体力消耗如下（下标表示关卡编号）： cost = [

0, 3, 5, 2, 4] ，其中 cost[i] 表示到达第 i 关需要消耗的体力， cost[0]=0 表示在开始状态，体力消耗为
0。小杨每次可以从当前关卡 前进 1 步或 2 步。按照上述规则，从第 1 关到第 4 关所需消耗的最小体力为 7。

第 10 题 假定只有一个根节点的树的深度为1，则一棵有 个节点的完全二叉树，则树的深度为 。

3 编程题（每题 25 分，共 50 分）

3.1 编程题 1

试题名称：路径覆盖

时间限制：1.0 s

内存限制：512.0 MB

3.1.1 题目描述

给定一棵有 个结点的有根树 ，结点依次以 编号，根结点编号为 。方便起见，编号为 的结点称为结
点 。

初始时 中的结点均为白色。你需要将 中的若干个结点染为黑色，使得所有叶子到根的路径上至少有一个黑色结
点。将结点 染为黑色需要代价 ，你需要在满足以上条件的情况下，最小化染色代价之和。

叶子是指 中没有子结点的结点。

3.1.2 输入格式

第一行，一个正整数 ，表示结点数量。

第二行， 个正整数 ，其中 表示结点 的父结点的编号，保证 。

第三行， 个正整数 ，其中 表示将结点 染为黑色所需的代价。

3.1.3 输出格式

一行，一个整数，表示在满足所有叶子到根的路径上至少有一个黑色结点的前提下，染色代价之和的最小值。

3.1.4 样例

3.1.4.1 输入样例 1

3.1.4.2 输出样例 1

3.1.4.3 输入样例 2

4
1 2 3
5 6 2 3

1

2

3

21

7
1 1 2 2 3 3
64 16 15 4 3 2 1

1

2

3

第 10 页 / 共 13 页

af://n245
af://n246
af://n255
af://n259
af://n263
af://n265
af://n266
af://n268
af://n270

3.1.4.4 输出样例 2

3.1.5 数据范围

对于 40% 的测试点，保证 。

对于另外 20% 的测试点，保证 。

对于所有测试点，保证 ， 。

3.1.6 参考程序

3.2 编程题 2

试题名称：道具商店

时间限制：1.0 s

内存限制：512.0 MB

3.2.1 题目描述

道具商店里有 件道具可供挑选。第 件道具可为玩家提升 点攻击力，需要 枚金币才能购买，每件道具只能购
买一次。现在你有 枚金币，请问你最多可以提升多少点攻击力？

101

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 1e5 + 5;

int n;
int f[N], c[N], cnt[N];
long long ans[N];

int main() {
 scanf("%d", &n);
 for (int i = 2; i <= n; i++) {
 scanf("%d", &f[i]);
 cnt[f[i]]++;
 }
 for (int i = 1; i <= n; i++)
 scanf("%d", &c[i]);
 for (int i = n; i >= 1; i--) {
 if (cnt[i] == 0)
 ans[i] = c[i];
 ans[i] = min(ans[i], 1ll * c[i]);
 ans[f[i]] += ans[i];
 }
 printf("%lld\n", ans[1]);
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

第 11 页 / 共 13 页

af://n272
af://n274
af://n278
af://n280
af://n289

3.2.2 输入格式

第一行，两个正整数 ，表示道具数量以及你所拥有的金币数量。

接下来 行，每行两个正整数 ，表示道具所提升的攻击力点数，以及购买所需的金币数量。

3.2.3 输出格式

输出一行，一个整数，表示最多可以提升的攻击力点数。

3.2.4 样例

3.2.4.1 输入样例 1

3.2.4.2 输出样例 1

3.2.4.3 输入样例 2

3.2.4.4 输出样例 2

3.2.5 数据范围

对于 的测试点，保证 ， 。

对于所有测试点，保证 ， ， ， 。

3 5
99 1
33 2
11 3

1

2

3

4

1321

4 100
10 1
20 11
40 33
100 99

1

2

3

4

5

1101

第 12 页 / 共 13 页

af://n291
af://n294
af://n296
af://n297
af://n299
af://n301
af://n303
af://n305

3.2.6 参考程序

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 505;
const int oo = 1e9 + 10;

int n, k;
int f[N * N];

int main() {
 scanf("%d%d", &n, &k);
 for (int i = 1; i < N * N; i++)
 f[i] = oo;
 int s = 0;
 for (int i = 1; i <= n; i++) {
 int a, c;
 scanf("%d%d", &a, &c);
 s += a;
 for (int j = s; j >= a; j--)
 f[j] = min(f[j], f[j - a] + c);
 }
 int ans = 0;
 for (int i = 0; i < N * N; i++)
 if (f[i] <= k)
 ans = i;
 printf("%d\n", ans);
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

第 13 页 / 共 13 页

af://n308

	C++　六级
	单选题（每题 2 分，共 30 分）
	判断题（每题 2 分，共 20 分）
	编程题（每题 25 分，共 50 分）
	编程题 1
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

	编程题 2
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

