
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

答案 B B A C B C B B C C C B A C B

C++　八级

2025 年 12 月

1 单选题（每题 2 分，共 30 分）

第 1 题 某平台生成“取件码”由6个字符组成：前4位为数字（ 0 – 9 ），后2位为大写字母（ A – Z ），其中字母不能
为 I 、 O 。假设数字和字母均可重复使用，要求整个取件码中恰好有2个数字为奇数。共有多少种不同取件码？（

）

A. 1,440,000

B. 2,160,000

C. 2,535,000

D. 8,640,000

第 2 题 下列代码实现了归并排序（Merge Sort）的分治部分。为了正确地将数组 a 的 [left, right] 区间进行
排序，横线处应该填入的是（ ）。

A. merge_sort(a, mid, right)

B. merge_sort(a, mid + 1, right)

C. merge_sort(a, left, mid + 1)

D. merge_sort(a, mid - 1, right)

第 3 题 某社团有男生8人、女生7人。现需选出1名队长（性别不限）、1名副队长（性别不限）、2名宣传委员（两
人无角色区别，且必须至少1名女生）。假如一人不能兼任多职，共有多少种不同选法？（ ）

A. 12012

B. 11844

C. 12474

D. 11025

第 4 题 二项式 的展开式中 项的系数为（ ）。

A. -7168

void merge_sort(int a[], int left, int right) {
 if (left >= right) return;
 int mid = (left + right) / 2;
 merge_sort(a, left, mid);
 ________; // 在此处填入选项
 merge(a, left, mid, right); // 合并操作
}

1

2

3

4

5

6

7

第 1 页 / 共 9 页

af://n2
af://n4

B. 7168

C. -1792

D. 1792

第 5 题 下面是使用邻接矩阵实现的Dijkstra算法的核心片段，用于求单源最短路径。在找到当前距离起点最近的顶点

u 后，需要更新其邻接点 j 的距离。横线处应填入的代码是（ ）。

A. dis[j] < dis[u] + graph[u][j]

B. dis[j] > dis[u] + graph[u][j]

C. graph[u][j] > dis[u] + dis[j]

D. dis[j] > graph[u][j]

第 6 题 下面程序使用动态规划求两个字符串的最长公共子序列（LCS）长度，横线处应填入的是（ ）。

A. dp[i][j] = dp[i - 1][j] + dp[i][j - 1];

B. dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]);

C. dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

D. dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + 1;

第 7 题 已知两个点 和 在平面直角坐标系中的坐标。下列C++表达式中，能正确计算这两点之间
直线距离的是（ ）。

A. sqrt((x1 - x2) ^ 2 + (y1 - y2) ^ 2)

B. sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2))

C. pow(x1 - x2, 2) + pow(y1 - y2, 2)

D. abs(x1 - x2) + abs(y1 - y2)

第 8 题 已知 int a = 10; ，执行 int &b = a; b = 20; 后，变量 a 的值是（ ）。

for (int j = 1; j <= n; j++) {
 if (!visited[j] && graph[u][j] < INF) {
 if (________) { // 在此处填入选项
 dis[j] = dis[u] + graph[u][j];
 }
 }
}

1

2

3

4

5

6

7

#include <algorithm>
#include <string>
#include <vector>
using namespace std;

int lcs_len(const string &a, const string &b) {
 int n = (int)a.size(), m = (int)b.size();
 vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= m; j++)
 if (a[i - 1] == b[j - 1])
 dp[i][j] = dp[i - 1][j - 1] + 1;
 else
 ________; // 在此处填入选项
 return dp[n][m];
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

第 2 页 / 共 9 页

A. 10

B. 20

C. 30

D. 编译错误

第 9 题 下列代码的时间复杂度（以 为自变量，忽略常数与低阶项）是（ ）。

A.

B.

C.

D.

第 10 题 下列程序实现了线性筛法（欧拉筛），用于在 时间内求出 之间的所有质数。为了保证每个合数
只被其最小质因子筛掉，横线处应填入的语句是（ ）。

A. i + primes[j] == n

B. primes[j] > i

C. i % primes[j] == 0

D. i % primes[j] != 0

第 11 题 在C++语言中，关于类的继承和访问权限，下列说法正确的是（ ）。

A. 派生类可以访问基类的 private 成员。

B. 基类的 protected 成员在私有继承（private inheritance）后，在派生类中变为 public 。

C. 派生类对象在创建时，会先调用基类的构造函数，再调用派生类自己的构造函数。

D. 派生类对象在销毁时，会先调用基类的析构函数，再调用派生类自己的析构函数。

第 12 题 当输入 6 时，下列程序的输出结果为（ ）。

long long s = 0;
for (int i = 1; i <= n; i++) {
 for (int j = 1; j * j <= i; j++) {
 s += j;
 }
}

1

2

3

4

5

6

for (int i = 2; i <= n; i++) {
 if (!not_prime[i]) primes[++cnt] = i;
 for (int j = 1; j <= cnt && i * primes[j] <= n; j++) {
 not_prime[i * primes[j]] = true;
 if (________) break; // 在此处填入选项
 }
}

1

2

3

4

5

6

7

第 3 页 / 共 9 页

A. 14

B. 27

C. 28

D. 15

第 13 题 从1到999这999个正整数中，十进制表示中数字 5 恰好出现一次的数有多少个？（ ）

A. 243

B. 271

C. 300

D. 333

第 14 题 当输入 2023 时，下列程序的输出结果为（ ）。

A. 7

B. 8

C. 9

D. 11

第 15 题 对连通无向图执行Kruskal算法。已按边权从小到大依次扫描到某条边 。此时在已经构建的部分
MST结构中， 已在同一连通块内。关于边 的处理，下列说法正确的是（ ）。

A. 必须选入MST，否则可能不连通。

B. 一定不能选入MST（在此扫描顺序下）。

C. 若后续出现更大的边权，可以回溯改选 。

D. 只有当 是当前最小边时才能舍弃。

#include <iostream>
using namespace std;
int f(int n) {
 if (n <= 3) return n;
 return f(n - 1) + f(n - 2) + 2 * f(n - 3);
}
int main() {
 int n;
 cin >> n;
 cout << f(n) << endl;
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

#include <iostream>
using namespace std;

int main() {
 int x, ans = 0;
 cin >> x;
 while (x != 0) {
 x -= x & -x;
 ans++;
 }
 cout << ans << endl;
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

第 4 页 / 共 9 页

题号 1 2 3 4 5 6 7 8 9 10

答案

2 判断题（每题 2 分，共 20 分）

第 1 题 若一项任务可用两种互斥方案完成：方案A有 种做法，方案B有 种做法，则总做法数为 。

第 2 题 在C++语言中，引用一旦被初始化，就不能再改为引用另一个变量。

第 3 题 快速排序和归并排序的平均时间复杂度都是 ，但快速排序是不稳定的排序算法，归并排序是稳定
的排序算法。

第 4 题 使用 math.h 或 cmath 头文件中的函数，表达式 sqrt(4) 的结果类型为 double 。

第 5 题 在杨辉三角形中，第 行（从0开始计数，即第 行有 个数）的所有数字之和等于 。

第 6 题 使用二叉堆优化的Dijkstra最短路算法，在某些特殊情况下时间复杂度不如朴素实现的 。

第 7 题 个不同元素依次入栈的出栈序列数与将 个不同元素划分成若干非空子集的方案数相等。

第 8 题 快速排序在最坏情况下的时间复杂度为 ，可以通过随机化选择基准值（pivot）的方法完全避免退
化。

第 9 题 在C++语言中，一个类可以拥有多个构造函数，也可以拥有多个析构函数。

第 10 题 求两个序列的最长公共子序列（LCS）时，使用滚动数组优化空间后，仍然可以还原出具体的LCS序列。

3 编程题（每题 25 分，共 50 分）

3.1 编程题 1

试题名称：猫和老鼠

时间限制：1.0 s

内存限制：512.0 MB

3.1.1 题目描述

猫和老鼠所在的庄园可以视为一张由 个点和 条带权无向边构成的连通图。结点依次以 编号，结点
（ ）有价值为 的奶酪。在 条带权无向边中，第 （ ）条无向边连接结点 与结点 ，边权

 表示猫和老鼠通过这条边所需的时间。

猫窝位于结点 ，老鼠洞位于结点 。对于老鼠而言，结点 是安全的当且仅当：

老鼠能规划一条从结点 出发逃往老鼠洞的路径，使得对于路径上任意结点 （包括结点 与老鼠洞）都有：
猫从猫窝出发到结点 的最短时间严格大于老鼠从结点 沿这条路径前往结点 所需的时间。

老鼠在拿取安全结点的奶酪时不存在被猫抓住的可能，但在拿取不是安全结点的奶酪时则不一定。为了确保万无一
失，老鼠决定只拿取安全结点放置的奶酪。请你计算老鼠所能拿到的奶酪价值之和。

第 5 页 / 共 9 页

af://n197
af://n233
af://n234
af://n243

3.1.2 输入格式

第一行，两个正整数 ，分别表示图的结点数与边数。

第二行，两个正整数 ，分别表示猫窝的结点编号，以及老鼠洞的结点编号。

第三行， 个正整数 ，表示各个结点的奶酪价值。

接下来 行中的第 行（ ）包含三个正整数 ，表示图中连接结点 与结点 的边，边权为 。

3.1.3 输出格式

输出一行，一个整数，表示老鼠所能拿到的奶酪价值之和。

3.1.4 样例

3.1.4.1 输入样例 1

3.1.4.2 输出样例 1

3.1.4.3 输入样例 2

3.1.4.4 输出样例 2

3.1.5 数据范围

对于 的测试点，保证 ， 。

对于所有测试点，保证 ， ， 且 ， ， 。

5 5
1 2
1 2 4 8 16
1 2 4
2 3 3
3 4 1
2 5 2
3 1 8

1

2

3

4

5

6

7

8

221

6 10
3 4
1 1 1 1 1 1
1 2 6
2 3 3
3 1 4
3 4 5
4 5 8
5 6 2
6 4 1
3 2 4
5 4 4
3 3 6

1

2

3

4

5

6

7

8

9

10

11

12

13

31

第 6 页 / 共 9 页

af://n250
af://n255
af://n257
af://n258
af://n260
af://n262
af://n264
af://n266

3.1.6 参考程序

3.2 编程题 2

试题名称：宝石项链

时间限制：1.0 s

内存限制：512.0 MB

#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>

using namespace std;

const int N = 1e5 + 5;
const long long oo = 1e18;

int n, m;
int a, b;
int c[N];
vector<pair<int, int>> e[N];
long long dis[N];
priority_queue<pair<long long, int>> q;
long long ans;

int main() {
 scanf("%d%d", &n, &m);
 scanf("%d%d", &a, &b);
 for (int i = 1; i <= n; i++)
 scanf("%d", &c[i]);
 for (int i = 1; i <= m; i++) {
 int u, v, w;
 scanf("%d%d%d", &u, &v, &w);
 e[u].emplace_back(make_pair(v, w));
 e[v].emplace_back(make_pair(u, w));
 }
 for (int i = 1; i <= n; i++)
 dis[i] = oo;
 dis[b] = 0;
 q.push(make_pair(-dis[b], b));
 while (!q.empty()) {
 auto p = q.top();
 q.pop();
 if (dis[p.second] != -p.first)
 continue;
 int u = p.second;
 for (auto r : e[u]) {
 int v = r.first, w = r.second;
 if (dis[v] > dis[u] + w) {
 dis[v] = dis[u] + w;
 q.push(make_pair(-dis[v], v));
 }
 }
 }
 for (int i = 1; i <= n; i++)
 if (dis[i] < dis[a])
 ans += c[i];
 printf("%lld\n", ans);
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

第 7 页 / 共 9 页

af://n269
af://n271

3.2.1 题目描述

小 A 有一串包含 枚宝石的宝石项链，这些宝石按照在项链中的顺序依次以 编号，第 枚宝石与第 枚
宝石相邻。项链由 种宝石组成，其中第 枚宝石种类为 。

小 A 想将宝石项链分给他的好朋友们。具体而言，小 A 会将项链划分为若干连续段，并且需要保证每段都包含全部

 种宝石。请帮小 A 计算在满足条件的前提下，宝石项链最多可以划分为多少段。

3.2.2 输入格式

第一行，两个正整数 ，分别表示宝石项链中的宝石的数量与种类数。

第二行， 个正整数 ，表示每枚宝石的种类。

3.2.3 输出格式

输出一行，一个整数，表示宝石项链最多可以划分的段数。

3.2.4 样例

3.2.4.1 输入样例 1

3.2.4.2 输出样例 1

3.2.4.3 输入样例 2

3.2.4.4 输出样例 2

3.2.5 数据范围

对于 的测试点，保证 。

对于所有测试点，保证 ， ， ，保证 均在 中出现。

6 2
1 2 1 2 1 2

1

2

31

7 3
3 1 3 1 2 1 2

1

2

21

第 8 页 / 共 9 页

af://n280
af://n283
af://n286
af://n288
af://n289
af://n291
af://n293
af://n295
af://n297

3.2.6 参考程序

#include <cstdio>
#include <algorithm>

using namespace std;

const int L = 20;
const int N = 2e5 + 5;
const int oo = 1e9;

int n, m;
int t[N], jump[L][N];
int cnt[N], tot;
int ans;

int go(int u) {
 int cnt = 0, ans = 0;
 for (int i = L - 1; i >= 0; i--)
 if (cnt + jump[i][u] <= n) {
 cnt += jump[i][u];
 ans += 1 << i;
 u = (u + jump[i][u] - 1) % n + 1;
 }
 return ans;
}

int main() {
 scanf("%d%d", &n, &m);
 for (int i = 1; i <= n; i++) {
 scanf("%d", &t[i]);
 t[i + n] = t[i];
 }
 for (int i = 1, r = 0; i <= n; i++) {
 while (tot < m) {
 r++;
 if (!cnt[t[r]]++)
 tot++;
 }
 jump[0][i] = r - i + 1;
 if (!--cnt[t[i]])
 tot--;
 }
 for (int i = 1; i < L; i++)
 for (int j = 1; j <= n; j++) {
 int tar = (j + jump[i - 1][j] - 1) % n + 1;
 jump[i][j] = min(jump[i - 1][j] + jump[i - 1][tar], oo);
 }
 for (int i = 1; i <= n; i++)
 ans = max(ans, go(i));
 printf("%d\n", ans);
 return 0;
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

第 9 页 / 共 9 页

af://n300

	C++　八级
	单选题（每题 2 分，共 30 分）
	判断题（每题 2 分，共 20 分）
	编程题（每题 25 分，共 50 分）
	编程题 1
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

	编程题 2
	题目描述
	输入格式
	输出格式
	样例
	输入样例 1
	输出样例 1
	输入样例 2
	输出样例 2

	数据范围
	参考程序

